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Abstract
Ecological patterns in biodiversity are primarily based on conspicuous organisms. Few 
methods are used to survey the taxonomically rich cryptobiome, which is made up 
of inhabitants from within microhabitats. One way that cryptic marine biodiversity 
can be non-invasively surveyed is by analyzing environmental DNA (eDNA) present 
in seawater. Using coral reefs as a model system, here we compare estimates of cryp-
tic diversity among community biomass and eDNA metabarcoding sampling methods 
with a broad eukaryotic marker (COI). First, contributions to eDNA were investigated 
across cryptobiomes through a comparison of community metabarcoded biomass 
from standardized autonomous reef monitoring structures (ARMS) to eDNA acquired 
from seawater in which individual ARMS were soaked. Second, we compared these 
results to those from eDNA samples taken from within reef crevices and the am-
bient water column. Metabarcoding of community biomass from ARMS and eDNA 
from the two types of water samples revealed significantly different communities of 
cryptic coral reef habitat with little overlap between methods. Taxa that were unique 
to metabarcoding of ARMS biomass were predominantly from chitinous and calcify-
ing groups (polychaetes, palaemonid shrimp, mollusks, brittle stars, and red algae), 
which suggests that these taxa are underrepresented in eDNA surveys. Other than 
the corals themselves, sponges and red algae were significant drivers of reef crevice 
community differences, while ambient seawater samples detected mostly planktonic 
organisms and reef fishes. Our data indicate that both eDNA and ARMS provide in-
complete accounting of cryptic diversity. Direct sampling of biomass is best suited for 
building taxonomies and improving databases, whereas eDNA methods offer rapid 
insights into the composition of cryptobiomes. Because each method likely captures 
different taxa, multiple targeted assays can be used to provide the greatest estimates 
of metazoan and macroalgal richness.
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1  |  INTRODUC TION

The global patterning of biodiversity is a direct result of numerous 
complex phenomena that continually act across multiple spatial 
scales resulting in dynamic species ranges within geographic and eco-
logical space (Blowes et al., 2019; Descombes et al., 2015; Tittensor 
et al., 2010). With many different biomonitoring protocols imple-
mented across diverse ecosystems, our biodiversity estimates are 
unavoidably biased by observational methods (Heisenberg, 1958). 
Measuring local biodiversity is widely recognized as a crucial step 
in conservation planning (Margules & Pressey, 2000; Noss, 1990). 
However, when biodiversity data are sparse, monitoring cannot be 
performed rapidly on a routine basis (Dale & Beyeler, 2001; Hirst, 
2008; Parrish et al., 2003), or different methods uncover contrasting 
patterns of biodiversity (Whitworth et al., 2017), conservation plan-
ning becomes increasingly difficult. Marine conservation lags behind 
terrestrial efforts given limited marine protection status (Gleason 
et al., 2006; Mouillot et al., 2020; Sala et al., 2021) and islands in 
particular face elevated levels of habitat destruction and biodiver-
sity loss (Tershy et al., 2015). Coastal reef ecosystems make up a 
small percentage of the ocean, yet contribute disproportionately to 
the overall abundance and diversity of marine life (Costanza et al., 
2014; Fisher et al., 2015). Local and global stressors threaten coral 
reefs and the ecological goods and services they provide (Moberg & 
Folke, 1999). With the rapid decline of coral reefs on a global scale 
(Descombes et al., 2015; Hughes et al., 2003, 2017; Pandolfi et al., 
2003), efficient and effective assessments of biodiversity are vital 
for understanding ecological processes and supporting conservation 
efforts (Knowlton et al., 2010; Margules & Pressey, 2000; Parrish 
et al., 2003).

The surface-dwelling corals and fishes that are overtly associ-
ated with reef habitats account for a fraction of the total species 
richness of metazoans, whereas the coral reef cryptobiota (micro-
flora and fauna, cavity-dwellers, or coelobites) living in the crevices 
of the coral limestone structure make up an estimated 91% of known 
species in this ecosystem (Hartman, 1970; Jackson & Buss, 1975; 
Jackson et al., 1971; Stella et al., 2010). These organisms support 
key ecological processes, such as nutrient cycling (Depczynski & 
Bellwood, 2003; Richter et al., 2001) and carbonate cementation 
(Wulff & Buss, 1979; Zundelevich et al., 2007), and can aid in de-
terring coral predators (Glynn, 1980, 1983). Cavity-dwellers consist 
of important trophic groups such as suspension feeders (Scheffers 
et al., 2010; Wunsch & Richter, 1998), predators (Glynn, 2006; 
Reaka, 1987), herbivores (Coen, 1988; Klumpp et al., 1988), and de-
tritivores (Rothans & Miller, 1991) that sustain ecosystem function 
on coral reefs (reviewed by Brandl et al., 2019). Yet, our knowledge 
and exploration of these cryptic habitats are restricted by the lim-
itations of traditional survey methods and taxonomic expertise. As 
a result, large portions of overall coral reef biodiversity are missed 
or remain undocumented, as so-called ‘dark diversity’ (Pärtel et al., 
2011).

Few methods currently exist for surveying cryptic reef habi-
tat and its dark diversity. Autonomous reef monitoring structures 

(ARMS) are one tool that has been used widely in long-term ben-
thic settlement monitoring of coral reef cryptobiota. The primary 
advantage of ARMS is that they provide a standardized, replicated 
habitat similar to the structural complexity of surrounding reef 
cavities (Brainard et al., 2009; Leray & Knowlton, 2015; Ransome 
et al., 2017). ARMS also allow for non-destructive sampling of 
coral habitat interstices and have helped fill large gaps in survey-
ing cryptobiota which otherwise would remain largely inaccessible 
(Wunsch & Richter, 1998). By incorporating morphometric sorting 
and voucher-based DNA barcode sampling of both sessile and motile 
taxa, the use of ARMS has contributed significantly to DNA librar-
ies that currently house a limited number of barcoded sequences 
from this vast community (Timmers et al., 2020). With the advent 
of high-throughput DNA sequencing, the DNA metabarcoding of 
ARMS biomass has facilitated standardized community-level biodi-
versity comparisons across spatial and temporal scales (e.g., Leray & 
Knowlton, 2015; Hurley et al., 2016; Pearman et al., 2016, Pearman 
et al., 2019; Pennesi & Danovaro, 2017; Carvalho et al., 2019; David 
et al., 2019).

However, ARMS sampling has several limitations. First, although 
ARMS circumvent destructive sampling of the reef, they require de-
ployment in the field for years to allow for adequate colonization, 
particularly for diverse communities with potentially long exclu-
sion times and few dominant competitors (Buss & Jackson, 1979; 
Pearman et al., 2016; Ransome et al., 2017). Second, they require 
SCUBA diving and specialized tools to install and recover the units. 
Third, they require extensive pre-processing upon recovery and 
many hours of skilled labor to capture the sessile and motile commu-
nities that colonized each ARMS unit. Although ARMS have become 
a standard method to survey cryptic taxa, the time required for ade-
quate settlement means that rapid surveys are not possible.

Recent advances in high-throughput DNA sequencing technolo-
gies have led to the implementation of biodiversity assays targeting 
environmental DNA (eDNA), genetic material shed by organisms in 
the form of metabolic waste or sloughed cells. Environmental DNA 
assays offer fast and efficient insights into reef-scale metrics of 
biodiversity (Alexander et al., 2020; DiBattista et al., 2017, 2020; 
Nguyen et al., 2020; Sawaya et al., 2019) and can detect both abun-
dant and rare taxa (Balasingham et al., 2018; Borrell et al., 2017; 
Boussarie et al., 2018; Jerde et al., 2011; Nichols & Marko, 2019; 
Port et al., 2016; Thomsen et al., 2012b) at a fraction of the cost 
of visual survey methods (Brown et al., 2004; Harper et al., 2018). 
Environmental DNA surveys require minimal field effort yet allow 
researchers to detect taxa across the tree of life (Stat et al., 2017). 
The relative simplicity of eDNA protocols allows for surveying field 
sites that would otherwise be difficult to access (DiBattista et al., 
2019; Everett & Park, 2017) and can easily be adapted for citizen 
science to further increase public awareness of biodiversity loss 
(Deiner et al., 2017).

However, one of the main disadvantages of eDNA surveys is 
that detection depends on capture methods (Bessey et al., 2020; 
Deiner et al., 2015; Freeland, 2017; Piggott, 2016) and rates of 
eDNA production, transport, and degradation (Andruszkiewicz 
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et al., 2019; Dell’Anno & Corinaldesi, 2004; Jo et al., 2019), which 
may vary across taxa (Klymus et al., 2015; Sassoubre et al., 2016) 
and habitat types (Deiner & Altermatt, 2014; Kelly et al., 2018; 
O’Donnell et al., 2017). These limitations may ultimately lead to 
patchiness of eDNA signals in seawater samples (Bessey et al., 
2020) and therefore bring into question the capability of eDNA 
samples from the water column to contain DNA from cryptobiota 
living inside the reef structure. While eDNA from filtered seawa-
ter has been used extensively in studies of plankton (Berry et al., 
2019; Djurhuus et al., 2018; Kelly et al., 2014; Massana et al., 
2015), nekton (Bakker et al., 2017; Berry et al., 2019; Boussarie 
et al., 2018; DiBattista et al., 2017; Thomsen et al., 2012a), and 
dominant epifauna (Alexander et al., 2020; Everett & Park, 2017; 
Nichols & Marko, 2019; Port et al., 2016), much less is known 
about its effectiveness for surveying reef cryptobiomes. As eDNA 
targets genetic material sloughed from tissue or as waste, sam-
pling eDNA in the water column likely favors mucus-producing 
taxa, plankton, such as micro-algae and copepods, and other abun-
dant benthic taxa living near or on the surface of the reef.

Here, we compare and contrast metazoan cryptobiota commu-
nities directly detected in ARMS units to those indirectly sampled 
from eDNA extracted from water samples using DNA metabarcod-
ing of a 313 base pair fragment of the mitochondrial DNA (mtDNA) 
cytochrome c oxidase subunit I (COI) gene (Geller et al., 2013; Leray 
et al., 2013), the standard universal barcode for identifying most ani-
mal groups (Hebert et al., 2003). Our study's objectives were first to 
compare direct estimates of cryptic biodiversity using community-
based ARMS metabarcoding to indirect estimates of eDNA released 
by intact ARMS communities soaking in filtered seawater before 
being disassembled. Ideally, eDNA from soaking ARMS should cap-
ture the same cryptic diversity as the direct metabarcoding of ac-
cumulated biomass. However, we predict that due to the variation 
in eDNA shedding among invertebrate taxa, ARMS biomass will 
capture different communities than eDNA sampling. Second, we 
compare these two sampling methods to eDNA collected from nat-
ural reef crevices and the ambient water column to assess whether 
eDNA can be used to survey reef cryptobiomes. Due to differences 
in water flow and the patchiness of eDNA in seawater, we do not ex-
pect that eDNA from the water column will reveal the same cryptic 
diversity when compared to samples taken from inside reef inter-
stices. Although both metabarcoding of ARMS biomass and eDNA 
share certain biases (see Murray et al., 2015), a comparison assumes 
that ARMS attract similar settlers to natural reef habitat (Pennesi & 
Danovaro, 2017; Plaisance et al., 2011). This is the first study to our 
knowledge to compare cryptobiota from ARMS biomass with eDNA 
collections.

2  |  MATERIAL S AND METHODS

Our study compared different assessment methods for detecting 
cryptobiota using DNA metabarcoding (Figure 1). First, we exam-
ined filtered water from soaking individual ARMS units (referred to 

here as ‘soaking’) with subsequent bulk extractions of ARMS biota 
(from here on referred to as ‘biomass’). Second, we compared these 
two sampling methods to eDNA surveys of the surrounding reef 
using filtered seawater taken from within reef crevices (from here 
on referred to as ‘crevices’) and the ambient seawater above the reef 
(from here on referred to as ‘ambient’).

2.1  |  ARMS deployment

Six Autonomous Reef Monitoring Structures (ARMS) units (made 
from 23 cm × 23 cm PVC, forming a tiered stack of open and semi-
closed layers) were deployed subtidally (Figure S1), at a depth of 
approximately 3–4 m, on the reef at Moku o Loʻe (Hawaiʻi Institute 
of Marine Biology, HIMB), located on the Hawaiʻian island of Oʻahu 
(Figure S2). ARMS units were left out on the reef over 23 months 
starting in July 2016 to allow settlement and colonization of marine 
taxa.

2.2  |  ARMS retrieval, soaking, and metabarcoding

Upon retrieval (in June 2018), a 106-μm Nitex-lined crate was placed 
over the ARMS to limit the loss of motile organisms during transport 
to the surface. Once back at HIMB, ARMS units were submerged for 
two hours in aerated 75-l aquaria containing 45 μm filtered seawa-
ter prior to sample processing. Immediately after ARMS units were 
removed from the aquaria, water in each tank was homogenized 
by stirring with a sterile aluminum wand. Water samples were col-
lected from each aquarium using two new 60-ml Luer-lock syringes 
(to avoid clogging the filter), which would later be pooled by ARMS 
(soaking, n = 6).

For each of the six ARMS units, plates were disassembled and 
scraped cleaned of all the accumulated biomass. Biomass was then 

F I G U R E  1  The four methods used in the DNA metabarcoding 
of cryptic coral reef habitat: biomass (accumulated biomass from 
ARMS fractions, pooled by unit, n = 6), soaking (aqueous DNA 
collected from soaking ARMS units in seawater aquaria, n = 6), 
crevices (eDNA collected from within reef crevices, n = 12), and 
ambient (eDNA from surface seawater collected from the back reef, 
n = 6)

Soaking

Crevice

Biomass

Ambient
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homogenized in a sterilized blender, poured into a 45-µm filter, and 
10 g of the homogenate was subsampled for DNA metabarcoding. 
Water holding ARMS were then filtered through 500-µm and 100-
µm sieves to collect any mobile specimens. These 500-µm and 100-
µm sieved fractions underwent a decantation process to separate 
the sediments from the biological tissue (Leray & Knowlton, 2015). 
The resulting biological material was then crushed using a mortar 
and pestle, and 10 g was subsampled to be analyzed via DNA me-
tabarcoding (biomass, n = 6). All metabarcoding samples were then 
preserved for high-throughput sequencing of the cytochrome c ox-
idase I (COI) gene.

2.3  |  Reef crevice and ambient eDNA sampling

Ambient water samples (n = 6) were collected from the adjacent back 
reef within 10 m of the original ARMS deployment location (depth 
2–4 m, distance >10 m from the reef) using new 60-ml syringes. Six 
reef crevices (depth 2–4 m, Figure S1) were sampled twice using new 
60-ml syringes (sampling spaced by 10-min intervals, n = 12), which 
were partially inserted into each crevice (approximately 3–5  cm). 
Crevices were selected based on the following criteria: (1) were 
completely contained within the dominant mounding coral, Porites 
compressa, which forms the majority of the back reef; (2) had crevice 
opening diameters limited to <7 cm and a crevice depth of at least 
15 cm; and (3) had no visible outlet; all crevices represented a com-
mon size range in the back reef habitat. As reef crevices at this site 
were generally <500  ml in volume, sampling of crevice water was 
limited to small volumes (120 ml) to avoid ‘contamination’ of crevice 
water with ambient water, thereby limiting the sample volumes used 
in method comparisons.

2.4  |  Environmental DNA filtration

Following the collection of eDNA syringes, all samples were im-
mediately filtered through mixed cellulose ester filters (Millipore; 
diameter 13  mm, pore size 0.22  μm) attached to Luer-lock filter 
holders. Collection blanks (DI water filtered through new syringes, 
filter, and Luer-lock filter holder, see Contamination prevention, 
below) were filtered in the field alongside biological samples. 
Filters and filter holders were placed on ice and transported back 
to the laboratory for DNA extraction. Using sterile forceps, filters 
were placed into individual 2-ml screw-cap microcentrifuge tubes 
with 720 μl ATL buffer (Qiagen). Tubes were shaken vigorously 
for 5 minutes in a tissue lyser (Retsch), then incubated at 56°C for 
30 minutes, followed by an additional shaking and 30-min incuba-
tion step. Each filter was then digested with 80 μl Proteinase K 
(Qiagen) and incubated at 56°C for 1 hr. After transferring 600 μl 
of the supernatant to new tubes, the manufacturer's protocol for 
DNeasy Blood & Tissue Kit (Qiagen) was followed with minor ad-
justments: 600 μl AL buffer, 600 μl ethanol, and two final elution 
steps of 50 μl AE buffer.

2.5  |  DNA metabarcoding and sequencing

Amplifications of the COI gene were conducted in 13 μl volumes 
targeting a 313-bp fragment using mlCOIintF/jgHCO2198 primers 
(Leray et al., 2013) plus the Illumina overhang adapters. Reactions 
consisted of 6.3 μl MyTaq 2x (Bioline), 0.65 μl BSA (Thermo Fisher 
Scientific, 20 mg/ml), 4.45 μl nuclease-free water (Growcells), 1.0 μl 
template DNA (21.3 ± 2.76 ng/μl SE), and 0.3 μl of each forward and 
reverse primers (10  μM). Thermal cycling parameters were as fol-
lows: initial denaturation step of five minutes at 95°C, followed by 
35 cycles of 30 s at 95°C, 30 s at 50°C, and 45 s at 72°C, with a final 
extension of 10 min at 72°C. The quality of all amplifications was 
assessed using gel electrophoresis, running PCR products through a 
1.5% agarose gel stained with GelRed (Biotium), and visualized on an 
ultraviolet imaging platform. Libraries were prepared for sequencing 
by purification with a 1:1.12 ratio (DNA:beads) of Agencourt Ampure 
XP beads (Beckman Coulter), followed by indexing using Nextera XT 
v2 (Illumina) adapters (following the manufacturer's protocol) and 
an additional bead purification step. Amplicons were then assessed 
for DNA concentration with a Qubit fluorometer and dsDNA HS 
detection kit (Thermo Fisher Scientific). Pooled equimolar ampli-
cons (including no template controls) were then pair-end sequenced 
on an Illumina MiSeq platform using the V3 600-cycle reagent kit 
in one MiSeq flow cell at the Advanced Studies in Genomics and 
Proteomics facility at the University of Hawaiʻi at Mānoa.

2.6  |  Contamination prevention

All laboratory surfaces and equipment were sterilized using a 10% 
bleach solution before and after processing samples. Amplification 
products (as well as negative controls) were prepared for sequencing 
in a post-PCR work area physically separated from pre-PCR areas 
(using dedicated post-PCR pipettors, plastics, and reagents) to pre-
vent contamination. Template controls (PCR negatives, n = 2, and 
collection blanks, n = 2) were sequenced alongside biological sam-
ples as a necessary precaution to monitor cross-contamination of 
samples and carry-over from any potential equipment contamina-
tion. Syringes, filters, and filter holders used in eDNA sampling were 
used only once.

Thirty-nine MOTUs were present in negative control samples, 
34 of which were present in the collection blank, and only one was 
able to be identified to phylum (Nemertea). Molecular operational 
taxonomic units (MOTUs) present in controls (Figure S3) were re-
moved from the dataset prior to downstream analysis. The positive 
PCR control (n = 1) was spiked with 1 μL template DNA extracted 
from Porites compressa tissue (1.2 ng/μl).

2.7  |  Bioinformatics

After sequencing, a total of 8.5 million demultiplexed reads (83,285 
± 6680 SE reads from ARMS extractions and eDNA samples) were 
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pre-processed by paired-end merging followed by primer, adapter, 
and quality trimming in Geneious Prime v2021.0.3 (Biomatters, 
Ltd.). Next, 3.2 million reads were then processed using the R 
modular package for metabarcoding bioinformatics: Just Another 
Metabarcoding Pipeline (JAMP—https://github.com/Vasco​Elbre​
cht/JAMP), which integrates USEARCH v10.0.240 (Edgar, 2010), 
VSEARCH v2.4.3 (Rognes et al., 2016), and CutAdapt v1.9 (Martin, 
2011). More specifically, sequence lengths were filtered (CutAdapt; 
min = 295, max = 340), and any remaining low-quality sequences 
were filtered (UPARSE; fastq_filter with maxee = 0.25 and qmax = 
60) and discarded (Edgar & Flyvbjerg, 2015). A total of 2,910,394 
million sequences were dereplicated (min. unique size = 2) and 
clustered with simultaneous de novo removal of chimeras using 
USEARCH (cluster_otus 97% identity). The remaining 2,826,190 
million dereplicated reads of all samples, including singletons, were 
then matched to their respective clustered MOTUs with a mini-
mum match of 97% (USEARCH; usearch_global and strand plus).

MOTUs were then translated into amino acids and aligned to the 
BIOCODE reference data set using Multiple Alignment of Coding 
Sequences (MACSE; Ranwez et al., 2011). MACSE detects interrup-
tions in open reading frames from nucleotide substitutions that can 
result in stop codons which are likely to be pseudogenes. MOTUs 
that did not pass through MACSE (n = 15) were removed from the 
MOTU table and only MOTUs with a read abundance above 0.01% 
(MOTU sequences divided by the sample sequence sum) were con-
sidered in downstream analysis to reduce the number of false posi-
tives due to PCR and sequencing errors (Bista et al., 2017; Bokulich 
et al., 2013; Elbrecht et al., 2017).

The paucity of reference barcode data in public databases hin-
ders the interpretation of metabarcoding data, with large numbers 
of MOTUs being classified as ‘unidentified’ (Leray & Knowlton, 
2015). Therefore, we cross-checked MOTU sequence classifi-
cations against five reference databases to maximize taxonomic 
assignments for cryptic reef metazoans. First, we ran two local 
BLASTn searches, one against the DNA barcodes taken from a 
set of ARMS plates used in settlement mesocosms at HIMB, iden-
tified using a combination of 28S RNA and COI DNA barcoding 
and morphology (Timmers et al., 2020), and another against a 
curated reference database containing 16,679 COI sequences of 
coral reef fauna from the Moʻorea BioCode project (Meyer, 2017). 
Second, we classified sequences using the ecotag algorithm (Boyer 
et al., 2016), which uses a lowest common ancestor classification 
against a local COI database consisting of 192,929 sequences from 
GenBank and BOLD (Wangensteen et al., 2018). Third, we used 
the R package, Informatic Sequence Classification Trees (INSECT), 
which uses a hidden Markov model approach to assign sequences 
against a classification tree built from 396,413 sequences from the 
MIDORI database and GenBank (Wilkinson et al., 2018). Finally, 
we classified sequences against 1,054,973 COI-derived sequences 
(~500,000 of which are not in BOLD or Midori databases) from 
GenBank with CO-ARBitrator, which provides taxonomic classifi-
cation based on sequence properties to reduce error rates (Heller 
et al., 2018).

Taxonomic assignments were only accepted if the approach 
matched at ≥85% identity, ≥85% coverage, and ≥200-bp align-
ment length (Ransome et al., 2017), due to the limited number of 
marine invertebrates within reference databases. Ecotag assign-
ments were accepted if the “best identity” was ≥80% and INSECT 
full assignments set at a probability of ≥0.80 were accepted while 
anything less than a 0.80 probability was assigned to the phylum 
level. Annotated MOTUs were then examined across competing 
methods, and the final classification was based on the assignment 
which achieved the single greatest identity from the five data-
bases. We accepted class, order, family, and genus annotations 
if the sequence identity was ≥90%, ≥92%, ≥96%, and ≥98%, re-
spectively (Timmers et al., 2020; Yang et al., 2017). Only metazoan 
and macroalgal MOTUs were kept for downstream analysis, and 
sequences assigned to the classes Aves, Mammalia, and Insecta 
were removed from the dataset. While a handful of marine insect 
and DNA has been detected in reef fish gut contents (Brandl et al., 
2020), most marine insect species are found on surface waters and 
mainly within mangrove swamps, estuaries, saltmarshes, and in-
tertidal zones (Cheng, 1976). Thus, we removed MOTUs identified 
to the class Insecta because these MOTUs are most likely from 
contamination due to land-based processing of ARMS rather than 
from inside reef interstices.

2.8  |  Statistical analyses

Data were analyzed using R v4.0.2 (R Development Core Team, 
2011). The resulting MOTU table was rarefied to a mean sequence 
depth of 7,900 reads (rrarefy.perm, n = 100) using the EcolUtils 
package (Salazar, 2018) to control for the effects of library size 
estimates (Gotelli & Colwell, 2001; Weiss et al., 2017). We then 
examined community composition by phylum, class, order, and 
family based on the DNA read abundances and number of MOTUs 
assigned to each taxonomic rank. We ran a generalized linear 
model (GLM, family = quasipoisson) on DNA read abundances 
among phyla for each of the detection methods. A permutational 
analysis of variance (PERMANOVA, one-factor design, permuta-
tions = 9999) was performed first on all the metazoan and mac-
roalgal MOTUs, second on only those MOTUs that were identified 
to order using the reference sequence databases, and third on 
MOTUs identified to order with scleractinians (corals) removed 
to compare only crevice-dwellers. The latter analysis limited the 
signal from the dominant mounding Porites corals which formed 
the majority of the reef structure at this site (Nichols & Marko, 
2019 and references within) and does not form the structure of 
ARMS. Pairwise comparisons were calculated using the adonis.
pair function in the EcolUtils package (Salazar, 2018). Non-metric 
multidimensional scaling (NMDS) was used to visualize community 
data from the three MOTU tables (all metazoans and macroalgae, 
all identified to order, and identified to order with corals removed) 
using the metaMDS (Hellinger standardization of Bray–Curtis 
dissimilarities) and envfit (permutations = 9999) functions of the 

https://github.com/VascoElbrecht/JAMP
https://github.com/VascoElbrecht/JAMP
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vegan package (Oksanen et al., 2013) to examine which taxa were 
correlated with communities among sampling methods. All graphs 
were produced using ggplot2 (Wickham, 2011).

3  |  RESULTS

Across all sampling methods, the majority of DNA sequence reads 
were from metazoans and macroalgae (66.2%, Figure S4), with 
25.2% of reads belonging to microbes and 8.6% that were unclassi-
fied. After removal of microbes and unclassified reads, the rarefac-
tion curve of MOTU accumulation showed that our sequence depth 
adequately captured metazoan and macroalgal richness present in 
each sample (Figure S5). Among the retained 893 metazoan and 
macroalgal MOTUs, most DNA reads were assigned to arthropods 
(27.6%), followed by cnidarians (18.1%), annelids (15.9%), mollusks 
(11.9%), sponges (8.8%), red algae (8.4%), and chordates (7.2%). For 
the three eDNA sampling methods (soaking, ambient, and crevice), 
cnidarians were most abundant in crevice samples (Porites making 
up 82% of scleractinian DNA reads and 48% of total crevice reads), 
whereas arthropods were most abundant in ambient and soaking 
samples (Figure 2). The most abundant MOTUs were attributed to 
arthropods detected across all methods (biomass 35%, soaking 32%, 
ambient 23%, and crevice 19%) and sponges in crevices (27%). There 
were significant differences in DNA read abundances for cnidar-
ians from crevices (GLM quasipoisson; p = 0.004, Figure 3, Table 
S1), arthropods from ambient and soaking (p = 0.042 and p = 0.047, 

respectively), and annelid worms and mollusks from biomass sam-
ples (p = 0.033 and p = 0.013, respectively).

Across all four sampling methods used to survey reef cryptobiota, 
ARMS biomass detected the greatest percentage of total metazoan 
and macroalgal MOTUs (65%), with over a third of all 893 MOTUs 
(35.4%) being unique to this method. Upon closer examination of the 
MOTUs detected by ARMS biomass, unique DNA read abundances 
were mainly distributed across palaemonid shrimp, brittle stars, 15 
families of annelid worms (14 within the class Polychaeta), and seven 
families of mollusks (five of which were calcifying, Figure S6). All 
but one pairwise comparison (biomass and soaking) shared fewer 
than 20 MOTUs (Figure 4), with only seven detected in all methods 
(Figure S7). The seven taxa shared across all samples included Porites 
(order Scleractinia, 64.1% relative DNA read abundance), Dendostrea 
spp. (order Ostreida, 17.4 ± 3.6%), and the following with minor con-
tributions (<0.5% relative DNA read abundance), Acinetosporaceae 
(order Ectocarpales), hydroids (order Leptothecata), Callyspongia 
(order Haplosclerida), and anemones (order Actiniaria, Figure S7). 
Biomass and soaking shared the greatest number of MOTUs (180, 
20.2%) and had similar DNA read abundances across phyla (GLM 
quasipoisson: χ2 = 12.2, df = 12, p = 0.43, Figure S8).

The eDNA samples were much more variable, detecting high 
relative abundances of fewer taxonomic groups, such as planktonic 
copepods, corals, oysters, sponges, and red algae when compared to 
ARMS methods (Figure S9). Sampling the ambient water column re-
covered 64 unique MOTUs across ten phyla, but unique read abun-
dances were predominantly from single occurrences of polychaete 
worms (order Terebellida), planktonic copepods, and reef fish (Figure 
S10). Targeting crevice eDNA detected 30 unique MOTUs with red 
algae from a single family (Rhodomelaceae) and sponges in greatest 
relative abundance (Figure S11).

Significant community compositional dissimilarities for identifi-
able MOTUs (Bray–Curtis) were detected by each sampling method 
for all metazoan and macroalgal MOTUs (PERMANOVA: k = 2, stress 
= 0.09, F3,23 = 5.13, p < 0.001, Figure 5a), metazoan and macroalgal 
MOTUs that were identified at the order level (PERMANOVA: k = 3, 
stress = 0.07, F3,23 = 10.4, p < 0.001, Figure 5b), and MOTUs identi-
fied to order with stony corals removed (PERMANOVA: k = 4, stress 
= 0.08, F3,23 = 3.55, p < 0.001, Figure 5c). Community differences 
were driven by significant pairwise differences between all sampling 
methods at all levels tested (ɑ = 0.05, Holm corrected, Tables S2–S4).

Crevice and ambient eDNA samples from the reef were domi-
nated by stony corals (order Scleractinia, Figure 5b). Biomass and 
soaking of ARMS were distinct (from ambient and crevice eDNA 
methods) mainly due to the abundance of polychaete worms (order 
Phyllodocida and Capitellida), sponges (orders Dendroceratida, 
Haplosclerida), oysters (order Ostreoida), decapods (order 
Decapoda), scyphozoans (order Semaeostomeae), tunicates (order 
Enterogona), mollusks (order Littorinimorpha), and red algae (order 
Palmariales, Table S5). Using a subset of the data to omit the domi-
nant coral taxa, crevice and ambient samples were instead driven by 
red algae (order Ceramiales) and sponges (order Homosclerophorida, 
Figure 5c, Table S6).

F I G U R E  2  Proportional number of metazoan and macroalgal 
molecular operational taxonomic units (MOTUs, totals 
marked above each method) and DNA reads detected by each 
sampling method (biomass, soaking, crevice, and ambient) that 
were identified to the phylum level using the five reference 
sequence databases. Phyla that had <1.0% relative abundance 
(Echinodermata, Nemertea, Nematoda, Ochrophyta, Chlorophyta, 
Platyhelminthes, Gastrotricha, Xenacoelomorpha, Bryozoa, 
Rotifera, and Entoprocta) were grouped as “Other”

ARMS Biomass Soaking Crevice Ambient
580 390 175 133
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4  |  DISCUSSION

Based on the data from our four survey methods, patterns of MOTU 
richness and abundance of DNA reads suggest that broad eDNA sur-
veys from ambient seawater do not fully capture reef cryptobiome 
diversity. Ambient and crevice communities only shared 5% of total 
MOTUs and were significantly distinct from each other. Ambient 
eDNA samples also had some of the fewest shared MOTUs with 
cryptobiota from ARMS (Figure 4), partly due to dilution of crypto-
biota eDNA and our limited sampling volume, which could be maxi-
mized to increase detection of rare taxa (Bessey et al., 2020; Turner 
et al., 2014). Nevertheless, the MOTUs detected by soaking ARMS 
indicate that chitinous and calcareous taxa will be undersampled 
using any eDNA method, as they may contribute less to the aque-
ous eDNA pool. Ambient eDNA was dominated by copepods and 
taxa that live close to the surface of the reef structure, mostly corals 
and other suspension feeders (Figure S9). While targeted sampling 
of reef cryptobiomes using eDNA methods may generally be more 
accessible, metabarcoding of ARMS biomass outperformed eDNA in 
several regards and adds to the existing literature that eDNA surveys 
overlook certain benthic taxa (Antich et al., 2020; Leduc et al., 2019), 
particularly chitinous and calcifying invertebrates. However, given 
the extensive time and resources needed to process the ARMS, in-
corporating multiple metabarcoding substrates (settlement plates, 
water column, crevices, sediments) is perhaps the optimal approach 

for broad detection of reef-associated cryptobiota (Koziol et al., 
2019). Hence, soaking is likely inadequate as a standalone replace-
ment for disassembling and metabarcoding of ARMS biomass.

Detecting taxa across the tree of life with eDNA depends on 
each taxon's relative contribution to the eDNA pool. While shedding 
rates vary among taxonomic groups, information on specific eDNA 
shedding rates is currently limited to a handful of species (Jo et al., 
2019; Klymus et al., 2015; Sansom & Sassoubre, 2017; Sassoubre 
et al., 2016; Wood et al., 2020). By comparing metabarcoding ARMS 
biomass to eDNA, we aimed to quantify which cryptofaunal groups 
contribute the most to the eDNA pool, and conversely, which taxa 
are most likely missed. Among all four sampling methods, metabar-
coding of ARMS biomass detected the greatest number of unique 
MOTUs, sharing the majority of MOTUs with the soaking of ARMS 
settlement plates. Soaking shared 42% of taxa detected by ARMS 
biomass, indicating that eDNA may miss the majority of cryptobi-
ota, which may be an effect of soaking times. ARMS biomass taxa 
that were missed by the soaking method were chitinous arthropods 
(predominantly of the class Malacostraca), polychaetes, brittle stars, 
and calcifying mollusks (Figure S6), suggesting that the eDNA con-
tribution is limited among these groups and may lead to underrep-
resentation in eDNA surveys of cryptic diversity. Unique MOTUs 
are expected across methods due to random sampling of rare taxa 
during DNA sequencing (Leray & Knowlton, 2017), but considering 
that biomass had such a large proportion of unique MOTUs from 

F I G U R E  3  Relative DNA read abundances from phyla detected using the four methods (biomass, soaking, ambient, crevice). Phyla 
that had <1.0% relative abundance (Echinodermata, Nemertea, Nematoda, Ochrophyta, Chlorophyta, Platyhelminthes, Gastrotricha, 
Xenacoelomorpha, Bryozoa, Rotifera, and Entoprocta) were grouped as “Other”. Significance codes from a generalized linear model 
(Phylum:Method): p < 0.001 = ’***’; <0.01 = ’**’; <0.05 = ’*’

**

*

**

*
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F I G U R E  4  Total shared and unique metazoan and macroalgal molecular operational taxonomic units (MOTUs) detected by each sampling 
method (biomass, soaking, crevice, and ambient), identified using the five reference sequence databases
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F I G U R E  5  (a) Non-metric multidimensional scaling (NMDS, Bray–Curtis dissimilarity, relative abundance ≥0.01%) of all metazoan and 
macroalgal molecular operational taxonomic units (MOTUs) from cryptic habitat communities. (b) NMDS (Bray–Curtis dissimilarity, relative 
abundance ≥0.01%) of MOTUs identified to order level using the five reference sequence databases. (c) NMDS (Bray–Curtis dissimilarity, 
relative abundance ≥0.01%) of MOTUs identified to order level, but with order Scleractinia removed. The direction and length of vectors are 
proportional to the degree of correlation as determined by the envfit function (permutations = 9999, pmax = 0.05, Tables S4 and S5) in the 
vegan package (Oksanen et al., 2013). One ambient sample was dropped, as it did not contain any metazoan or macroalgal MOTUs
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soaking indicates that its contribution to aqueous eDNA is not com-
parable among taxa.

As eDNA surveys are becoming increasingly commonplace, de-
termining whether cryptic taxa are represented in seawater samples 
is an important consideration when evaluating marine biodiversity. 
By using a single universal marker (COI) for eukaryotes, our sampling 
from one coral reef detected 893 metazoan and macroalgal taxa, ap-
proximately 15% of all described Hawaiian marine species (Miller & 
Eldredge, 1996), nearly doubling previous estimates of subtropical 
eukaryotic coral reef diversity using the combined results from mul-
tiple metabarcoding assays (Stat et al., 2017). Although two or more 
MOTUs could belong to the same species, the large number of de-
tected taxa is remarkably high, considering the stringent sequence 
filtering parameters, limited spatial distribution of samples, and rela-
tively small volumes that were employed. While multiple primers are 
suggested for broad detection of taxa across the tree of life, eDNA 
estimates of biodiversity have been focused on what we designate 
here as “ambient” samples (Alexander et al., 2020; DiBattista et al., 
2017, 2020; Stat et al., 2017). Ambient eDNA detected only 15% 
of MOTUs at our site, but by adding crevice samples, we were able 
to detect an additional 80 MOTUs (9%) that were not detected in 
ambient samples. While our sampling volumes were limited to match 
the volumes of reef crevices, larger volumes (either by pooling many 
crevices, e.g., Kelly et al., 2014) or through passive eDNA collection 
(Bessey et al., 2021) may narrow the differences between ARMS and 
eDNA sampling. In the absence of ARMS biomass, a combination of 
targeted eDNA approaches using varying sampling substrates and 
metabarcoding assays may be needed to uncover the greatest non-
destructive estimates of coral reef biodiversity.

On the other hand, soaking of ARMS detected 116 unique 
MOTUs (Figure S12), which demonstrates a potential pitfall of all 
eDNA methods—the exact source of macrobial eDNA is unknown. 
For instance, extracellular DNA signals remain orders of magnitude 
longer in sediment than in the water column (Dell’Anno & Corinaldesi, 
2004; Turner et al., 2015) and sediment accumulation on ARMS 
(Figure S1a) may have contributed to unique MOTUs detected by 
soaking, but not in the accumulated ARMS biomass. Biomass-rich 
specimens can also dominate read abundances thereby preventing 
smaller and less abundant taxa from being detected (Elbrecht et al., 
2017). Thus, the unique MOTUs uncovered from the soak might also 
be a result of sequencing artifacts with the metabarcoding of ARMS 
biomass. Even if some unique MOTUs from the soaking method did 
not actually originate from organisms in the ARMS, the presence 
or absence of exogenous DNA has no bearing on the relatively low 
number of taxa shared by biomass and the soaking method.

Sampling from the water column and from soaking of ARMS 
clearly misses a substantial number of taxa that were directly de-
tected on the ARMS, but this approach might not be accurately 
capturing the nearby cryptic reef communities given that the ARMS 
communities detected from both the biomass and soaking samples 
were significantly different from reef crevice sampling. Habitat 
type is a predominant driver of niche differentiation in coral reef 
invertebrate communities (Knowlton & Jackson, 1994) and differs 

depending on whether coral heads are alive or dead (Gibson et al., 
2011), with degraded reef frameworks exhibiting greater diversity 
(Enochs & Manzello, 2012; Nelson et al., 2016). Larval settlement 
of sessile reef invertebrates can be greater on artificial substrates 
(Higgins et al., 2019), in which community composition is affected by 
the orientation and composition of plates (Siddik et al., 2019), pres-
ence of microtopographies (Whalan et al., 2015), and grazing pres-
sure (Hixon & Brostoff, 1985). The organisms that settle on plastic 
settlement plates such as those that comprise an ARMS structure 
may not be representative of the dominant organisms inhabiting 
coral carbonate structures (Zimmerman & Martin, 2004), although 
similarities have been found in prior surveys using ARMS (Pennesi & 
Danovaro, 2017; Plaisance et al., 2011).

The significant differences between the crevice and soaking 
samples were driven largely by the amplification of corals, sponges, 
and red algae (order Ceramiales) in crevices and greater abundances 
of annelids and chitinous and calcifying taxa found on the ARMS. 
These differences are likely not merely due to differences in eDNA 
production, as crevice and soaking samples shared few taxa. The 
ARMS community difference could be due to settlement plates at-
tracting more annelid larvae (Pinochet et al., 2020) or as a result of 
the short residence times (minutes) of water through reef crevices 
(Richter & Wunsch, 1999), which may flush low-abundance eDNA 
(compared to hours for soaking of confined ARMS). If that interpre-
tation is correct, more intensive crevice sampling may detect greater 
annelid richness, which makes up a substantial proportion of reef 
cryptobiota (Enochs & Manzello, 2012; Milne & Griffiths, 2014).

The crevice community differences could be due to the prox-
imity of Porites compressa colonies. Most DNA reads from crevice 
samples were from hard corals (Figure S9) which regularly shed 
mucus (Brown & Bythell, 2005), especially under the high sediment 
exposure within Kāneʻohe Bay (Bessell-Browne et al., 2017; Hunter 
& Evans, 1995). Similarly, the high sponge richness found in the crev-
ice samples (Figure 2), particularly among those belonging to the 
order Homosclerophorida (Figure 5c), could be a result of sponge 
dominance within reef interstices (Jackson & Winston, 1982; Richter 
et al., 2001). Sponge contribution to eDNA signals may be inflated 
by high pumping rates of seawater (Weisz et al., 2008) and the con-
tinuous shedding of cells (Goeij et al., 2013; Rix et al., 2018). As a 
result, the eDNA collected from the cavities may be reflecting this 
biological phenomenon rather than capturing the overall community 
within the cavities. Regardless, even limited sample volumes from 
targeted eDNA sampling from within reef crevices show potential as 
a tool to increase diversity estimates of cryptobiota which are clearly 
not represented in ambient eDNA collections. Furthermore, as the 
number of taxa detected is highly affected by the volume of water 
filtered and sampling effort (Bessey et al., 2020; Grey et al., 2018), 
filtering larger volumes of water from crevices (see Kelly et al., 2014) 
may increase eDNA-based diversity estimates.

While understanding the contribution to eDNA across taxa is 
vital for implementing surveys of cryptic diversity on reefs, all me-
tabarcoding assays are influenced by the patchiness of reference 
sequence databases. Species with inherent societal, scientific, or 
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governmental interest are taxonomically biased in diversity data 
(Troudet et al., 2017) and can lead to lacking, or poor-quality ref-
erence data for cryptobiota, which by definition are themselves 
underrepresented. Although we tried to maximize the number of 
assigned MOTUs by querying five different reference sequence da-
tabases, the efficacy of DNA metabarcoding relies heavily on having 
robust reference sequence databases and markers that amplify taxa 
across many phyla (Deagle et al., 2014; Leray & Knowlton, 2016). 
Differences in primer binding affinity across taxa, as well as biases 
associated with PCR amplification, can also result in inaccurate es-
timates of relative abundances (Elbrecht & Leese, 2015; Piñol et al., 
2018). However, there are challenges and caveats to every sur-
vey technique attempting to measure and assess biological diver-
sity (Magurran & McGill, 2011). As a result, it is more important to 
choose an appropriate method that targets the system being studied 
based on the question of interest. For capturing diversity estimates 
in cryptic habitats, metabarcoding of biomass has proven to be a 
powerful tool (Leray & Knowlton, 2016). For comparing biodiversity 
among habitats, eDNA surveys may still be the method of choice, 
especially in resource-limited programs.

With coral reefs in decline from numerous threats, incorporating 
surveys of cryptobiomes is vital for management and conservation 
initiatives (Knowlton et al., 2010) and will provide better insights into 
how reef-associated biodiversity will be impacted by environmental 
conditions associated with climate change and other disturbances 
(Baker et al., 2008; Descombes et al., 2015; Edmunds et al., 2014; 
Hughes et al., 2003, 2018; Przeslawski et al., 2008). Further emphasis 
must be placed on understanding patterns of biodiversity, especially 
for groups of organisms that are underrepresented in barcoding da-
tabases, yet are critical to ecosystem function. The widespread use 
of molecular techniques, such as DNA metabarcoding, has allowed 
comprehensive surveys of entire marine ecosystems with high sensi-
tivity (Deiner et al., 2017; Leray & Knowlton, 2015, 2016; Stat et al., 
2017), particularly among taxonomic groups that would otherwise be 
missed through traditional survey methods (Nichols & Marko, 2019; 
Pearman et al., 2016). In addition to its non-destructive nature, eDNA 
surveys are relatively simple and can be applied to resource-limited 
programs, or to increase the scope of existing initiatives. Careful con-
sideration must be given to soaking times and sample volumes, while 
maximizing both would be ideal for future assays of benthic crypto-
biome communities. We demonstrate that metabarcoding remains a 
comprehensive and thorough survey tool for the reef cryptobiome, 
but water column eDNA assays are not the most effective method in 
capturing cryptic biodiversity. Our results highlight the importance 
of direct species collections, with eDNA providing a complementary 
and more rapid approach for characterizing cryptic communities.
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